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(57) ABSTRACT

A method for measuring a sample to identify a chemical
includes receiving respective spectra for each of a plurality
of chemicals. Using a processor, a plurality of binary math-
ematical filters are computed using the received spectra. A
spatial light modulator is adjusted according to a selected
mathematical filter. Light that has interacted with the sample
is dispersed over the surface of the spatial light modulator,
so that the spatial light modulator provides light at wave-
lengths corresponding to the selected mathematical filter.
The light provided by the spatial light modulator is mea-
sured to provide a score corresponding to the selected
mathematical filter. Filter scores are combined to determine
a chemical amount. The processor can operate detection
apparatus having a light source, an objective for focusing
source light onto the sample, a spatial light modulator, and
a detector for detecting the modulator output.
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1
OPTICAL CHEMICAL CLASSIFICATION

STATEMENT OF FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Contract No. IDBR 0754740 awarded by the National
Science Foundation. The government has certain rights in
the invention.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a nonprovisional of U.S. Provisional
Patent Application Ser. No. 61/712,993, filed Oct. 12, 2012
and entitled “Photon Level Chemical Classification using
Digital Compressive Detection,” the entirety of which is
incorporated herein by reference.

TECHNICAL FIELD

The present application relates to optical measurement,
and more particularly to using optical techniques to measure
chemical properties.

BACKGROUND

High-speed chemical analysis, including hyperspectral
imaging and monitoring of dynamic chemical processes,
requires collecting and analyzing hyperspectral data. Col-
lecting such data can be very time-consuming. For example,
rapid identification and quantification of chemical species in
complex mixtures is of importance to a wide range of
applications in biology, medicine, manufacturing, and secu-
rity. Multivariate statistical techniques combined with opti-
cal spectroscopies are increasingly employed in such appli-
cations for chemical component classification, calibration,
and hyperspectral imaging.

Previous schemes have incorporated chemometric tech-
niques into the measurement process by using either static
optical interference filters, or tunable liquid crystal or micro-
mirror-based multivariate optical elements built into the
spectrometer hardware.

For example, conventional optical array (e.g. charge-
coupled device or “CCD”) based spectrometers disperse
light of different wavelengths onto N separate detectors in
order to measure a spectrum. These devices have drawbacks
in the low-signal regime. For example, assuming that a
given chemical species emits over a fixed time period ~100
photons distributed over ~100 CCD pixels, then the result-
ing signal at each pixel would be well below the typical
CCD read noise of a few counts per pixel.

There is a need, therefore, for optical measurement
devices that can operate at low signal levels.

Reference is made to U.S. Pat. No. 6,529,276, U.S. Pat.
No. 8,406,859 and US 2007/0177240, each of which is
incorporated herein by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

Various objects, features, and advantages of the present
invention will become more apparent when taken in con-
junction with the following description and drawings
wherein identical reference numerals have been used, where
possible, to designate identical features that are common to
the figures, and wherein:
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FIG. 1 is a schematic of an exemplary detection instru-
ment;

FIGS. 2-4 show spectra and measured data for respective
experiments;

FIG. 5 shows variance of experimental data for various
measurement times;

FIG. 6 shows a comparison between experimental and
theoretical distributions;

FIG. 7 shows a comparison of experimental data using
various mathematical filters; and

FIG. 8 shows a flowchart illustrating an exemplary
method for measuring a chemical property.

The attached drawings are for purposes of illustration and
are not necessarily to scale.

DETAILED DESCRIPTION

Throughout this description, some aspects are described
in terms that would ordinarily be implemented as software
programs. Those skilled in the art will readily recognize that
the equivalent of such software can also be constructed in
hardware, firmware, or micro-code. Because data-manipu-
lation algorithms and systems are well known, the present
description is directed in particular to algorithms and sys-
tems forming part of, or cooperating more directly with,
systems and methods described herein. Other aspects of
such algorithms and systems, and hardware or software for
producing and otherwise processing signals or data involved
therewith, not specifically shown or described herein, are
selected from such systems, algorithms, components, and
elements known in the art. Given the systems and methods
as described herein, software not specifically shown, sug-
gested, or described herein that is useful for implementation
of any aspect is conventional and within the ordinary skill in
such arts.

Herein are described ways of, and devices for, greatly
speeding up the collection of chemometric data using a new
digital compressive detection strategy. Experimental results
demonstrate that detecting as few as ~10 Raman scattered
photons (in as little time as ~30 us) can be sufficient to
positively distinguish chemical species. This is achieved by
measuring the Raman scattered light intensity transmitted
through programmable binary optical mathematical filters
designed to minimize the error in the chemical classification
(or concentration) variables of interest. The theoretical
results are implemented and validated using a digital com-
pressive detection instrument that incorporates a 785 nm
diode excitation laser, digital micromirror device (DMD)
spatial light modulator, and photon counting photodiode
detector. Samples including pairs of liquids with different
degrees of spectral overlap (including benzene/acetone and
n-heptane/n-octane) are used to illustrate how the accuracy
of'the present digital compressive detection method depends
on the correlation coefficients of the corresponding spectra.
Comparisons of measured and predicted chemical classifi-
cation score plots, as well as linear and non-linear discrimi-
nant analyses, demonstrate that this digital compressive
detection strategy is Poisson photon noise limited and out-
performs total least squares-based compressive detection
with analog mathematical filters.

Various aspects relate to optimal binary mathematical
filters, compressive detection, digital micromirror devices
(DMDs), classification, or total least squares.

Herein are described various aspects of an inventive
digital compressive detection strategy that can be used to
facilitate rapid and accurate chemical classification based on
the detection of as few as ~10 Raman scattered photons.
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Unlike previous full spectral or compressive detection/
sensing methods, digital compressive detection utilizes
binary optical mathematical filters that are optimized to
minimize the resulting chemical classification uncertainty
(as further explained below). Various embodiments
described herein can outperform previous full spectral and
compressive chemical classification methods, including
those based on analog rather than binary optical mathemati-
cal filters.

FIG. 1 shows an exemplary compressive detection spec-
trometer using a Raman backscattering collection geometry.
This device is an example of a DMD-based near infrared
digital compressive detection instrument. Light paths are
shown with various combinations of dots and dashes to
permit distinguishing them visually in FIG. 1.

Source 101 includes a 785 nm single mode laser 105 (e.g.,
by Innovative Photonic Solutions) as a light source. After
passing through a laser-line bandpass filter 110 (e.g., a
Semrock [.I1.01-785-12.5), the laser is focused onto the
sample 140 with a NIR lens or other appropriate objective
130 (e.g., an Olympus LMPlan IR, 20x). The Raman scat-
tering is collected and separated from the laser Rayleigh
scattering with a dichroic mirror 114 (e.g., Semrock LPDO1-
785RS-25) and a 785 nm notch filter 115 (Semrock, NF0O3-
785E-25).

The Raman scattered light is then sent to detector 102,
being filtered between source 101 and detector 102 with a
900 nm shortpass (edgepass) filter 145 (e.g., a Thorlabs
FES0900) and subsequently directed to a volume holo-
graphic grating 155 (“VHG,” e.g., a VHG with 1200 L/mm,
center wavelength 830 nm such as an Edmund Optics
48-590). The window of the dispersed light in this example
is ~200 to 1700 cm™~! with a spectral resolution of 30 cm™
(this resolution is limited by the beam quality and hence the
image of the diode laser focal spot size which spans approxi-
mately 15 mirrors on the surface of an exemplary DMD).
(Other dispersive elements can be used, e.g., prisms or
planar gratings.) The light is collimated with an achromatic
lens 160 with a focal length of =50 mm (e.g., a Thorlabs
AC254-050-B) and focused onto the DMD 165 (e.g., a
Texas Instruments DLP Discovery 4000). The DMD 165 in
this example includes 1920x1080 aluminum mirrors (10.8
um pitch) that can tilt £12° relative to the flat state of the
array, controlled by an interface card (not shown; e.g., a DLP
D4000, Texas Instruments). The interface card can be
included in processor 186 or controller 166, or attached
thereto. All 1080 mirrors in each column of the array are set
to the same angle, and the 1920 columns are divided into
adjacent groupings (note that the roles of rows and columns
can be interchanged). For example, to separate the photons
into 128 “bins”, the bins being defined by bands of photon
energy, then groups of 15 adjacent columns are set in unison.
The DMD 165 is mounted at an angle such that the —-12°
mirror position directs photons back with a vertical offset of
~1 degree below the incident light in order to spatially
separate the incident and reflected photons. The latter (re-
flected) photons are recombined in a second pass through the
holographic grating 155, and focused onto a fiber optic cable
(not shown) that is connected to a photodiode photon
counting module or other photon counter 170 (e.g., a Perki-
nElmer SPCMCD2969PE). An exemplary photon counting
module 170 has a dark count rate of ~200 photons/s and no
read noise. A TTL pulse is output by the photon counter 170
as each photon is detected, and the pulses are counted in a
USB data acquisition (DAQ) card (National Instruments,
USB-6212BNC) or other DAQ 175. Integration timing is
controlled by setting the sampling rate and number of
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samples to acquire with the DAQ card in LABVIEW 2009
or another software program being executed by processor
186 or another computing device.

The DMD 165 is an example of a tunable optical element.
As described below, the positions of the mirrors on the DMD
can be selected according to “mathematical filters” to permit
measuring chemical data.

Processor 186 can include one or more microprocessors,
microcontrollers, field-programmable gate arrays (FPGAs),
application-specific integrated circuits (ASICs), program-
mable logic devices (PLDs), programmable logic arrays
(PLAs), programmable array logic devices (PALSs), or digital
signal processors (DSPs), and can implement processes of
various aspects described herein. Processor 186 can be
coupled to a tangible, nontransitory computer-readable stor-
age device such as a hard drive, removable medium, or
nonvolatile memory. For example, the tangible nontransi-
tory computer-readable medium or storage device can store
LABVIEW programs used as described herein. Processor
186 can execute one or more sequences of such computer
program instructions, as a result performing process steps
described herein. In this way, processor 186 carries out a
computer implemented process. Various aspects described
herein may be embodied as systems or methods. Accord-
ingly, various aspects herein may take the form of an entirely
hardware aspect, an entirely software aspect (including
firmware, resident software, micro-code, etc.), or an aspect
combining software and hardware aspects

FIG. 8 shows a flowchart illustrating an exemplary
method for measuring a chemical property. The steps can be
performed in any order except when otherwise specified, or
when data from an earlier step is used in a later step. In at
least one example, processing begins with step 810. For
clarity of explanation, reference is herein made to various
components shown in FIG. 1 that can carry out or participate
in the steps of the exemplary method. It should be noted,
however, that other components can be used; that is, exem-
plary method(s) shown in FIG. 8 are not limited to being
carried out by the identified components.

In step 810, spectra are received for various components
of interest. As discussed below, these spectra can be deter-
mined empirically. The spectra can be stored on a data
storage device and subsequently retrieved.

In optional step 815, the background can be subtracted
from each sample, if that approach is being used. Alterna-
tively, the estimator can be adjusted to remove the effect of
the background. These techniques are discussed below.

In step 820, an objective function is minimized. The
output of this step is a set of mathematical filters, e.g., DMD
micromirror positions, as discussed below. In an example,
the objective function is Equation (21).

In optional step 825, the set of mathematical filters from
the minimization is adjusted to provide binary mathematical
filters, e.g., by rounding. This is discussed below.

In step 830, a variable optical filter such as DMD 165 is
set according to a determined one of the mathematical filters.

In step 835, a sample is illuminated, resulting light is
filtered by the DMD 165, and the result is collected. The
resulting light can be Raman-scattering light, and the result
can be collected by a photon counter 170, as discussed
above.

In decision step 840, it is determined whether there are
more mathematical filters. If so, the next step is step 830. If
not, the next step is step 850. In this way, a separate
measurement is taken for each mathematical filter.

In step 850, the chemical property is automatically deter-
mined from the measured results, e.g., using processor 186,
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FIG. 1. In an example, the chemical property is a concen-
tration of a chemical component. In various aspects, step
850 includes determining the concentrations of each of n
chemical components in a sample. Examples of this are
discussed below with reference to FIGS. 2-4.

In view of the foregoing, various aspects provide illumi-
nation of samples and detection of the resulting light. A
technical effect is to measure chemical properties, e.g., to
determine which substance(s) are present in a sample.

The versatility of the tunable multivariate optical element
permits these instruments to function as generalized spec-
trometers, capable of either full spectral acquisition or
compressive detection using programmable optical math-
ematical filter functions.

Herein are described various aspects of new digital com-
pressive detection strategies that facilitate the chemical
classification of liquid samples with different degrees of
spectral overlap with data collection times ranging from ~30
us to ~5 ms. The resulting classification error can vary both
with the degree of spectral overlap and detection time. The
variance and shape of the associated score plots can depend
on photon counting statistics. Comparisons with detailed
theoretical predictions as well as linear and non-linear
discriminant analyses are described below.

Digital compressive detection can be used to accurately
classify chemical species under such conditions by using a
single-channel photon counting detector to determine the
total number of photons transmitted by binary optical math-
ematical filters optimized to distinguish the compounds of
interest. Various aspects advantageously permit measuring
with greater accuracy in the low signal regime.

Throughout the remainder of this disclosure, the term
“filter” refers to a mathematical filter unless expressly
indicated otherwise.

Compressive detection is related to compressive data
storage and multivariate chemometric methods. Chemomet-
ric techniques such as total least squares (TLS), partial least
squares (PLS), principle component analysis (PCA), and
feature selection may all be used to project N-channel
spectral information onto a lower-dimensional space defined
by the projections (dot-product scores) of a measured spec-
trum onto a smaller number of M-axes. The latter M-scores
may be used to classity, quantify, and compressively store
the chemical information of interest. Compressive detection
according to various aspects described herein differs from
the above schemes in that the M-scores are advantageously
directly detected using the instrument hardware, rather than
by post-processing full spectra. In other words, the intensity
transmitted through each of the M filters represents a direct
measure of the associated score, as it is equivalent to a
dot-product of the collected light and the filter function. This
mode of measurement benefits from Felgett’s (or multiplex)
signal-to-noise advantage, since the photons transmitted by
each filter are detected on one channel, rather than being
separately detected using N independent channels. The
choice of filters to determine the M-axes may be considered
as one type of feature selection. For a given measured
spectrum, the set of all features could be defined to be the dot
product of the spectrum with a vector having all entries
between 0 and 1. M of these vectors can be selected as filters
to minimize a particular measure of uncertainty in the
quantities of interest.

Herein is described compressive detection of emission-
type spectra with binary optical filters and photon counting
detection statistics. Various aspects of a digital compressive
detection strategy advantageously use binary filters math-
ematically optimized to mathematically minimize the error

20

35

40

45

55

6

in the classification score or component concentration. Pre-
vious compressive detection schemes, by contrast, focused
on minimizing spectral differences. Results described herein
have the unexpected advantage that results obtained using
binary filters, optimized as described herein, can provide
more effective classification results than those obtained
using analog filters and previous chemometric strategies.

As discussed above with reference to FIG. 1, filters (i.e.,
mathematical filters) are constructs that describe the trans-
mittance of photons as a function of energy level (wave-
length) of the photons. Multiple filters can be used. An
observation with a particular filter is the total photon count,
summed over a plurality of energy levels, from observing a
photon stream from, e.g., a DMD with mirrors configured to
reflect only photons with certain energy levels to the photon
counter. The DMD mirror positions are set according to the
filter to determine which energy levels will be counted.

A mathematical model can describe the measured
response of a given filter in terms of assumed rates of photon
emission for specified spectra. The problem of choosing
filters can be reformulated to minimize the expected squared
error in estimating these rates as a constrained optimization
problem.

It is desirable to find optimal settings for measurements
taken with, e.g., a digital micromirror device (DMD) or an
analog-based spatial light modulator (SLM). This can be
done using Design of Experiments techniques such as linear
models. Input data can be photon counts, modeled by
Poisson random variables whose variances equal their
means.

A hard model of linear additive spectra can be used, i.e.,
spectra of the chemical components of interest can be used
in computing mathematical filters, as described herein. It is
desirable to determine the concentrations of various chemi-
cal species from combined known spectra. This determina-
tion is also referred to as the supervised spectral unmixing
problem.

Various schemes related to this problem use a Poisson
model, e.g., (with error terms). However, these schemes
assume full spectrum measurements and hence do not con-
sider the choice of optimal filters for multiplex measure-
ments. Other schemes consider the problem of parameter
estimation from Poisson observations in the case that there
are more parameters than measurements, or employ other
approaches to Poisson estimation.

A representative sample includes various amounts of
chemical species from a known list, called S|, S,, ..., S,.
(These S;’s are not the spectra, just labels for the dlfferent
compounds ) In a given experiment, the stream of photons
counted by a detector from each S, can be modeled as a
Poisson process with rate parameter A, where A has units
photons/sec. All the photons from the various S;s are mixed
together in the stream of photons coming from the sample.
According to various aspects, the pattern of energies of the
photons is used to “unmix” the photons and so estimate
respective rate parameters A je[1, n].

Each A; will depend on, among other things, the amount
of S, in the sample. An input to the algorithm is a known rate
at which a unit amount of S, gives off photons. Therefore, an
estimate A, can be used to estimate the amount of compound
S, in the sample. The measurements in the experiment are
determined by the rate parameters A;, and those rate param-
eters are to be estimated. The amounts of the various S s can
be calculated from the As after estimating A,.

The number of photons emitted in an interval of time of
length t of species S, is a Poisson random variable with mean
A,
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The wavelength, or energy, of each photon observed in the
experiments can be labeled with an integer ie{1, . . . , N};

N is the total number of energy bins, or wavelength chan-
nels, in the detection system. Assume that the probability
that a photon from species S, has label i is given by P, so
> N P,=1. In other words, the P, i=1, . . ., N, form the
spectrum of the jth compound, normalized so that the sum
(or integrated area of the spectrum) is 1. Then the stream of
labeled photons emanating from a sample is modeled by a
vector Poisson process with rates

PA, (6]

where A=(A, ..., A,)7, and P=(P,). (Herein, superscript T
denotes “transpose.”) If an experiment is run (i.e., optical
measurements are collected) for time t then the number of
photons with label i entering an optical measurement instru-
ment from all chemical species has a Poisson distribution
with mean

z @
H{PR);, =1 PyAy.
=1

Assume that the number of wavelength channels, N, is
greater than the number of chemical species n, and that the
columns of P are linearly independent. This provides a
model for measured rate of photon emission per label i.

A mathematical model for the measuring device (e.g., of
FIG. 1) is now described. Assume n independent measure-
ments are collected, e.g., one for each possible chemical
species. (This can be generalized as discussed below.) In the
jth measurement, an optical filter (e.g., DMD 165, FIG. 1)
can be adjusted so the transmittance of all photons with
energy level i is a number F,; with 0<F,<1. The probability
that in the jth measurement a photon with energy label i is
counted is thus F,,. If F, =1, then in the jth measurement all
photons with energy level i are passed through to the
detector and counted. If F, =0, then in the jth measurement
all photons with energy level i are blocked from the detec-
tor—none of them are counted. An observation in the jth
measurement is the total photon count, summed over all
energy levels i, from observing the photon stream for T,
seconds, which will be a Poisson random variable with mean

n ©)

N
n N

Ty E Fij[z P;(/\(] =Ty FijPyAg.
= o1 =1

i=1 !

(The double subscript on T ; is used because the T,, numbers
can be placed on the diagonal of a matrix T, as discussed
below.) The columns of the matrix F=(F,) are the filters
(mathematical filters). The entries of F can be selected as
desired, since they are parameters of the measuring device.
That is, the measurement device is controlled to provide the
desired F; values.

For a DMD, the F,; values can be selected from the set
consisting of F, =0 or F, =1 (the equality relationship having
normal tolerances for, e.g., non-ideality of the optical com-
ponents, and likewise throughout). For an analog SLM, any
0<F =1 can be selected. Even with this wide range of
possible F,, values, optimal filters are nearly digital, in that
nearly all the entries F, i=1, . . ., N, are either 0 or 1. This
is discussed further below.
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The symbol x denotes a complete observation, a vector of
n independent Poisson random variables with means and
variances given by the vector

TFTPR, 4)

where T is the nxn diagonal matrix with diagonal entries
T, ..., T, F can be chosen so that F’P is invertible
(which is possible since P has full rank).

The symbol x denotes a sample from this random vari-
able. That is, X is an observation or measurement of the
respective photon counts for each measurement (each filter).
An estimate A of the true rates A is then given by

A=(TF"Py '%=(F"Py'T'5 )

The ith component of X is the count of the number of photons
observed by the detector during the period tT,; when the ith
filter is set. Using (e.g.) (5), measured values X can be
transformed to estimates of corresponding rates A.

The expected value of A satisfies

E(A=FP)y T EG)=(FP) ' T (TFPPR)=A. 6)

An effective expression can be derived for the expected
squared error of A as an estimator of A. This error is

M

which is the sum of the expected squared errors of all Ajs as
estimators of the photon count rates A, of the j chemical
species S;. Mathematically minimizing this sum permits
determining effective filters.

Models can also be used for which there are more
measurements than chemical compounds, in which case the
estimate is

A=BT'%, ®)

where B is a left inverse of F’P, i.e., BF’P)-1. With M
denoting the total number of measurements (M=n), F will be
an NxM matrix, and T will be an MxM matrix.

In designing filters F, assume that the total measurement
time, T, is 1, so that T, can be interpreted as the fraction
of the measurement time that jth filter is applied. When the
total measurement time in an experiment is T seconds, then
a measurement is taken with the jth filter for a period of tT),
seconds. With this normalization, the estimator in an experi-
ment of total measurement time T is

A=BD)'#=v"'BT'5 ©

and the variance of the estimator is inversely proportional to
T (because the variance of X is proportional to t). That is,
T !'BT'%, determined using the measured value %, is an
estimate of A, the photon rates (which can correspond, e.g.,
to concentrations of chemicals in the sample).

Define A=F”P and let B be a left inverse of A, i.e., BA=I
(so B=A"' if A is a square matrix). Then, for a given A and
Nxn matrix P of normalized spectra, there can be found a
number M (the number of measurements), an MxM diagonal
matrix, T (the times for all measurements), an NxM filter
matrix, F, and an nxM estimator matrix B to minimize

E(IBT'#-AlP) (10)
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subject to

BA=1,A=F'P,» T;=1, (n

where OsF <1 and T,>0.

To do this, an explicit formula for (10) can be found.
Denote by €; a column vector whose jth component is 1 and
whose other components are 0. The jth component of the
random variable x, xj:eij, is Poisson with mean and
variance equal to

TrTpa— A
Tye, FTPR=Ty(AR),, 12

since F7P=A by definition. So the random variable €; defined
by

€= %—(AK)j 13

has mean 0 and variance Tjj"l(AK)j. In other words,

e=T'x-4A (14)

is a vector of independent random variables, the jth com-
ponent of which has mean 0 and variance T,;”'(AA),. Thus,
since BA=I,

Be=BT'x-KA 1s)

is a vector random variable; the ith component of Be, Zb, €
has mean 0 and variance

l]]’

Z BiVar(e)) = Z BT (AR, (16)

From this follows the formula

E(|BT '), - K Z BT (AR an

Equation. (17) can be used to ignore the error in estimating

some components A, of A, so-called “nuisance parameters.”

An example is the intensity of a fixed background spectrum,

which is evident in measurement results even when there is

no sample. An estimate of the error of the background can

be left out of the following sum, as discussed below.
Summing over all i yields

E(IBT'x - A% 18

Z Z BTG (AR),
= Z TJle(AK)jZ b2

1
Z 7 M llBe; I17.
i

For fixed A, B, and A, optimal measurement times T, can
be determined. From the Cauchy-Schwarz 1nequahty, it
follows that, for fixed A and B, the optimal values of T,; in
(10) are given by
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IBeily (AR, (19

2. IBeilly (AR);

i —

Thus, this step can be reformulated by replacing (10) with
the right hand side of (18) and replacing T, by the right hand
side in (19). This gives

E(IBT % = AF) (leBell (AR, ] @0

Instead of minimizing the square, the value itself can
equivalently be minimized. Therefore, for a given A and
Nxn matrix P of normalized spectra, there can be determined
a number of measurements, M, an NxM filter matrix, F, and
an nxM matrix, B, to minimize

M 2D
> IBeily (4R
i=1
subject to
BA=I, 4=F'P, 0sFys1 for all i,j. (22)
Optimal filters F have the mathematical property that if

the value of M, the number of measurements, is fixed, then
the optimal filters obtained as the solution to (21) can be
chosen to include only Os and 1s, except for at most n—1
entries strictly between 0 and 1 in each filter.

Thus, the optimal filters can be described as “almost
binary,” or “almost digital,” in that nearly all the channels of
each filter can be selected to be either completely open (with
F,~1, i.e., full transmittance) or closed (with F,=0, i.e., no
transmittance) (“full” and “no” including variation for, e.g.,
manufacturing tolerances and non-idealities, as above; and
likewise throughout). For example, to distinguish two spec-
tra, two optimal filters can be chosen such that only one
channel in each filter is not digital. Setting that one channel
in each filter to 0 or 1 can result in a filter that is nearly
optimal. In experiments described herein, each non-binary
computed filter component F,; was rounded to the nearer of
Oorl.

For the optimal number of measurements, M, the optimal
filters can be chosen to be completely digital.

For fixed A, A, and T, the minimizing of B can be
performed using a standard generalized least-squares mini-
mizer. Specifically, fixing A, A, and T as described above
with reference to (10), and assuming that D=diag(ARA), the
diagonal matrix whose diagonal entries are the components
of the vector AA is invertible. Then the optimal B in (10) that
minimizes (18) is given by

B=(4"D 14yt (23)

Note that this does not provide the optimal B for (21),
whether or not A is known, except when A is invertible. In
that situation, B=A"", since T depends on B.

Computations based on the previous formulas can be
performed in various ways.

Given A=FP and A, finding the B that minimizes (21) is
a standard problem in convex analysis. Similarly, given A,
B, and A, equation (19) gives explicit values of T,,. So both
matrices B and T are functions of A and A.
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Ignoring the dependence of (21) on A, it is desirable to
determine the matrix A=F”P that minimizes (21). Perform-
ing this determination includes determining both the optimal
number of measurement filters and the entries of each filter.
In various aspects, the number of filters is selected to be
equal to the number of possible chemical species in the
sample, i.e., M=n. (M can also be selected =n.) Determining
A then reduces to minimizing (21) over all “feasible”
matrices A; a matrix A is feasible if it can be written as
A=FP with 0<F =1 for all i and j.

The problem of finding the optimal A is a nonlinear,
nonsmooth, nonconvex problem. In various aspects, e.g.,
when the dimension of A is relatively small, general opti-
mization routines such as those included with the Matlab™
software package, e.g., FMINCON, can be used. Tests have
been performed using up to ten chemical species and ten
filters.

Regarding the vector A used in (21), in various aspects, a
set of filters F is designed assuming that the pure component
emission rates are normalized to the same value

AN (24)

for all 1 and j. In these aspects, measurement filters F are
designed to minimize the error in estimating a mixture
where the respective rates of photons emitted by all chemi-
cal species are the same. A is therefore set=(1, 1, . . ., ).
A=FTP, B, and T can then be determined.

Referring back to FIG. 1, binary filter functions (F),
optimal times (T), and the estimator (B) were generated
from the spectra of all pure components, as discussed below,
using functions from MATLAB 7.13 R2011b. The input
binary optical filter function determined which mirrors were
oriented towards the detector (assigned a value of 1) or away
(assigned a value of 0). The binary (0-1) mathematical filters
were transmitted to the DMD 165 through LABVIEW
software via a controller 166 (e.g., a TEXAS INSTRU-
MENTS DDC4100 controller FPGA) that set blocks of
mirrors on the DMD 165 array corresponding to different
wavelengths to the appropriate position (e.g., £12°). LAB-
VIEW scripts running on processor 186 (FIG. 1) of a
computer (e.g., a desktop personal computer) were used to
sequentially apply the filters and integrate for the corre-
sponding times, to store the raw photon counts, and to
calculate the photon rates. Linear and quadratic discriminant
analyses were performed in MATLAB 7.13 R2011b. Data
was further processed and plotted in IGOR PRO 6.04.

Producing filters for a given application can be performed
using high signal-to-noise training spectra of each of the
components of interest. Measuring full spectra with the
DMD can be achieved by notch scanning. This can be done
by sequentially directing one mirror (or a small set of
mirrors) towards the detector (with all other mirrors directed
away) and counting the number of photons detected at each
notch position.

Notch scanning measurements were performed using 1 s
per notch to obtain spectra with a signal-to-noise ratio of
~500:1. A background spectrum was present in all of the
measured training spectra, arising from the interaction of the
excitation laser and the intervening optical elements. Two
compressive detection strategies were implemented for
removing this background. The first method involves mea-
suring the background (with no sample) and subtracting it
from the spectrum of each sample. The background spec-
trum and background-free sample spectra are then each
treated as independent components. Alternatively, since the
background is a fixed, unwanted component, the optimiza-
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tion problem can be modified to minimize the variance of
only the chemical components of interest as discussed
below.

In various aspects, the training spectra are used as mea-
sured (i.e., they include the background), and the back-
ground is treated as an additional independent component.
Linear combinations of the resulting optimal digital filters
are used to differentiate the photon counts originating from
the variable components and the fixed background. Results
presented herein were obtained using this approach.

Once the training spectra are measured, they are normal-
ized to unit area and are used as input to generate filters
satisfying the constraints described above with reference to
(21). Filters generated in this way are referred to herein as
“optimal binary” (OB) filters. In various aspects, the instru-
ment shown in FIG. 1 can utilize various other types of
filters. For example, analog filters of any spectral shape can
be produced by performing measurements using 7 binary
filters in order to obtain a greyscale with 128 transmittance
levels at each wavelength channel, as discussed below. Such
filters may be used to implement total least squares (TLS)
multivariate spectral analysis. In a first aspect, referred to as
TLS1, analog filters are used whose shapes are the same as
the Raman spectra of each of the chemical components of
interest (as measured using notch scanning). In a second
aspect, referred to as TL.S2, linear combinations of the above
filter functions are used to produce filters that directly
measure the classification score for each component (e.g.,
each chemical of interest). Since TLS2 filters include both
positive and negative features, two filters are used to inde-
pendently measure the positive and negative features, which
are subsequently combined to obtain the TLS2 filter signal.
Further details regarding the construction of OB filters and
analog TLS1/TLS2 filters are provided below. Examples of
the three types of filters are discussed below.

Measurements were performed using three pairs of
organic liquids with varying degrees of spectral overlap. The
first pair of liquids, acetone and benzene, have the least
similar spectra (with a correlation coefficient of 0.12). The
second pair of liquids, n-hexane and methylcyclohexane,
have more significantly overlapped spectra (with a correla-
tion coeflicient of 0.71). The third pair of liquids, n-heptane
and n-octane, have very highly overlapped spectra (with a
correlation coefficient of 0.99). Below are described results
of testing the influence of spectral overlap and comparisons
the resulting score distributions with theoretical predictions,
including both linear and non-linear discriminant analyses.

FIG. 2 shows experimental data of classification of mini-
mally overlapping spectra. (Throughout this disclosure, the
term “overlapping” refers to the extent to which the, e.g.,
Raman spectra of different chemicals contain peaks at
similar Raman shifts.) The Raman spectra of acetone

“red”), benzene (“blue”), and the background (“black™) are
shown in panels (a)-(c), respectively (note that panels (a)
and (b) include the background spectrum of panel (c)). The
shaded regions (“gray”) denote the filter, i.e., the OB wave-
lengths that are directed towards the detector. As shown in
panels (a)-(c), the Raman shifts can extend over a range of
~2500 cm™!. Centered on 785 nm (FIG. 1, laser 105), that is
a range of approximately 154 nm. The detector 102 can be
sensitive to photons with wavelengths in that range, e.g.,
visible or infrared. The term “optical” used herein with
reference to detector 102 does not limit the range of wave-
lengths (photon energies) detector 102 can detect.

The score plot in panel (d) shows the classification of
acetone (“red”) and benzene (“blue”) using both linear and
quadratic discriminants. Each point was obtained using three
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OB filters applied for a total integration time of 30 ps. The
darkness of each colored disk represents the number of times
each pair of photon rates was obtained in 1000 independent
measurements (per cloud)—the lightest disks indicate one
result each, the darkest acetone disk indicates 143 results,
the darkest benzene disk indicates 74 results.

FIG. 2 shows that the spectra of acetone and benzene are
well separated, and in fact nearly orthogonal to each other:
the angle between the corresponding normalized spectral
vectors (see, e.g., US 2012/0029880 A1) is ~84° (and thus
their dot-product is 0.12). Note that all the spectra include
the background spectrum shown in FIG. 2, panel (c). The
corresponding OB filter functions (obtained as described
below) are indicated by the grey regions in FIG. 2 (a)-(c);
these are the regions in which DMD mirrors are directed
towards the detector to distinguish acetone and benzene
from each other as well as from the background signal.

In this minimally overlapping case, each of the OB filters
reflects photons towards the detector that originate primarily
from the corresponding component. Herein, such filters are
described as being “associated with” one spectrum. The
filters associated with acetone and benzene appear reason-
able in that each wavelength is (approximately) assigned to
a filter where the probability of that wavelength appearing in
a spectrum is highest (see FIG. 2). However, there is no
simple heuristic for determining the mirror positions of
optimal binary filters. The optimization begins using a
heuristic that assigns to each component spectrum a corre-
sponding filter that has is in positions of relatively high
photon count for that spectrum. However, the error from
these filters is significantly higher than that found by the
optimization routine. Moreover, having more filters than
component spectra can decrease the recovery error, but there
is no evident heuristic for finding such filters. In various
aspects, the background is treated as a nuisance parameter
(see below).

The data points in the score plot in FIG. 2, panel (d)
represent the resulting component photon count rates (A=
(F'P)~'T~'%, e.g., photons/sec.) computed directly from the
measured number of photons emerging from each filter (X),
as specified by equation (5). In this data set, the values of T
were T,,=0.5289, T,,=0.4195, and T,,=0.0516 for the filters
associated with acetone, benzene, and the background,
respectively. That is, the filter outputs (photon rates when
each filter is set) are post-processed by multiplying them by
the matrix of (5) to determine rates. Rather than measuring
spectra at a large number of wavelengths and post-process-
ing the spectra, e.g., by fitting, to determine rates, rates are
determined by computations on a small number of measured
photon counts, one for each filter. In this example, the rates
are a linear combination of the measured photon counts.

The score plots shown in FIG. 2, panel (d) demonstrate
that, when using OB filters, the photon rates can classify
acetone and benzene in a total integration time of only 30 ps
(for all three filters). This figure illustrates clearly that the
points in a data cloud lie on a geometrical lattice arising
from the fact that only whole numbers of photons are
detected. The lattice points are well separated in this
example because the number of detected photons, X, was
generally less than 10 photons per filter. Consequently, many
of the 1000 independent measurements (per cloud) resulted
in coincident triples of and thus coincident pairs of A in FIG.
2, panel (d). This figure also illustrates that components of
A can be negative. This permits E(A), the expected value of
A, to equal A, so that A is an unbiased estimate of A. If all
negative components of A were set to zero, then A would be
a biased estimator of A.
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Linear discriminant analysis (LDA) and quadratic dis-
criminant analysis (QDA) were employed to find a classi-
fication boundary and crossing rate (using results obtained
with a total integration time of 100 ps). Though neither of
LDA’s assumptions (equal group covariances and normally
distributed probability densities) were met with this data set,
a reasonable classification boundary is nevertheless found
(straight line in panel d), with 0% error (boundary crossing)
for acetone and 2.2% for benzene. Relaxing the equal group
covariance assumption with QDA results in a more accurate
non-linear classification boundary (solid curved line in panel
d). The error rate in this case was 0.3% for acetone and 0%
for benzene. These results clearly demonstrate that digital
compressive detection can accurately classify these two
compounds using a small number of detected photons.

FIG. 3 shows experimental data of classification of mod-
erately overlapping spectra. The Raman spectra of n-hexane
(plus background; “red”), methylcyclohexane (plus back-
ground; “blue”), and the background (“black™) are shown in
panels (a)-(c), respectively. The shaded regions (“gray”)
denote the wavelengths directed towards the detector, as
determined by the OB filters. Note that the filter associated
with the background differs in this experiment from the filter
in the previous experiment, even though the backgrounds
are the same. This illustrates that filters depend on the
interaction of all chemical spectra in an experiment. The
score plot in panel (d) shows the classification of n-hexane

“red”) and methylcyclohexane (“blue”) using both linear
and quadratic discriminants. Each point was obtained using
three OB filters applied for a total integration time of 200 ps.
The darkness of each colored disk represents the number of
times each pair of photon rates was obtained in 1000
independent measurements (per cloud)—the lightest disks
indicate one result each, the darkest n-hexane disk (“red”)
indicates 5 results, the darkest methylcyclohexane disk
(“blue”) indicates 4 results.

FIG. 3 shows the more significantly overlapped spectra of
n-hexane and methylcyclohexane (and the background).
Although the spectral vectors of these two compounds are
separated by an angle of only ~45° (and thus have a dot
product of 0.71), the spectra clearly have different shapes.
The grey regions in FIG. 3 again show the corresponding
OB filters. Note that unlike the minimally overlapping
spectra described above, when using OB filters many of the
detected photons come from multiple components. As a
consequence of the increased degree of overlap, a longer
total integration time of 200 s is required to accurately
distinguish the chemical components. The fractional times
per filter were 0.3746, 0.5085, and 0.1169 for the three filters
associated with n-hexane, methylcyclohexane, and the back-
ground, respectively. The score plots in FIG. 3, panel (d)
again contain 1000 points per cloud. In this case the average
observed photon counts X were of the order of 25 photons
per filter measurement (see equation (5)), resulting in much
fewer coincident pairs of A.

The n-hexane/methylcyclohexane score plots were again
analyzed using both LDA and QDA (with a training set
collected using a total integration time of 100 ms). The
classification boundary for LDA is the straight line in panel
(d). The classification boundary for QDA is the solid curved
line in panel (d). The group covariances of the n-hexane and
methylcyclohexane rates are more similar than those of
benzene and acetone, and consequently LDA and QDA
provided similar classification results. QDA was slightly
more accurate at classifying the 200 us total integration data
correctly, with an error rate of 0.9% for n-hexane and 0.2%
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for methylcyclohexane. LDA’s error rate was 0% for
n-hexane and 1.5% for methylcyclohexane.

FIG. 4 shows experimental data of classification of highly
overlapping spectra. The Raman spectra of n-heptane (plus
background; “red”), n-octane (plus background; “blue”),
and the background (“black™) are shown in panels (a)-(c),
respectively. The shaded regions (“gray”) denote the wave-
lengths directed towards the detector, as determined by the
OB filters. The score plot in panel (d) shows the classifica-
tion of n-heptane (“red”) and n-octane (“blue”) using a
linear discriminant. Each point was obtained using three OB
filters applied for a total integration time of 5 ms. The
darkness of each colored disk represents the number of times
each pair of photon rates was obtained in 1000 independent
measurements (per cloud)—the lightest disks indicate one
result each, the darkest disk for both n-heptane and n-octane
indicates 2 results.

OB filters as described above can be applied to classifi-
cation of two linear alkanes, n-heptane and n-octane. Vari-
ous aspects advantageously permit differentiating these
components, which some prior schemes cannot. Specifically,
FIG. 4 shows the spectra of n-heptane and n-octane. There
are very few regions where one component dominates (the
dot product of the two normalized spectral vectors is 0.99,
which corresponds to an angle of ~8° between the two
vectors). At many wavelengths, there is a near 50:50 prob-
ability of detecting a photon from n-heptane or n-octane.
The wavelengths of greatest variance in the alkane spectra
yield at most a ~40:60 probability of detecting a photon from
one component or the other. Filters (mathematical filters) as
described above (e.g., with reference to (21)) can advanta-
geously be used to differentiate these compounds. The OB
filters used are shown in FIG. 4. The score plots in FIG. 4,
plot (d), were obtained using a total integration time of 5 ms
and fractional times of 0.4378, 0.5176, and 0.0446 for the
filters associated with n-heptane, n-octane, and the back-
ground, respectively. Due to the high degree of spectral
overlap, considerably more photons (an average of 200 per
filter measurement) were used for minimally overlapping
score distributions. The LDA classification boundary
(straight line in panel d) was obtained using a training set
obtained in a total integration time of 100 ms, and gives an
error rate of 0.9% for n-heptane and 0.3% for n-octane;
QDA gives the same results because the group covariances
are equal (within practical tolerances).

FIGS. 2-4 show data corresponding to the minimum
amount of time required to classity spectra with varying
degrees of overlap to within ~1% error.

FIG. 5 shows experimental data of the variance of the
experimentally measured photon rates for pure n-hexane

“red”) and pure methylcyclohexane (“blue”). The variance
decreases as the total measurement time increases from
(panel a) 0.3 ms to (panel b) 1 ms to (panel ¢) 10 ms to (panel
d) 100 ms. The misclassification rate decreases at longer
times, as the 1000 points in each cloud cluster tightly
together. The horizontal and vertical lines in each panel
indicate the corresponding mean photon detection rates.

FIG. 5 shows how the classification score plots for
n-hexane and methylcyclohexane vary as a function of
integration time, ranging from (a) 0.3 ms to (d) 100 ms.
When longer integration times are employed, the variance of
each distribution decreases as the inverse of the integration
time and the associated misclassification rate significantly
decreases. The shapes and sizes of the score plots are
entirely determined by photon counting (Poisson) statistics,
as discussed below.
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FIG. 6 shows a comparison between the experimental and
theoretical variances and shapes of the photon count distri-
butions for n-hexane (“red”) and methylcyclohexane
(“blue”). Each cloud contains 10,000 points. The panels
show (a) the experimental distributions, (b) the theoretical
distributions, and (c) the overlay of experimental and theo-
retical distributions, which reveals that (a) and (b) are in
agreement.

FIG. 6 shows both the experimentally measured and
theoretically simulated score plot for the n-hexane/methyl-
cyclohexane system at 1 ms total integration time. The mean
rates, A, used in the theoretical predictions were set to the
experimental average A values obtained from 10,000 inde-
pendent measurements of n-hexane and methylcyclohexane.
Thus, the OB filters, optimal times, normalized training
spectra (including the background), and approximated A
were the only input parameters. It was assumed that the
filters were perfectly square (binary) functions, and that the
photons emerging through the filters had ideal Poisson
distributions. FIG. 6 shows that the experimental (“red”
n-hexane or “blue” methylcyclohexane) measurements in
panel (a) agree with the theoretical (“black™) values in panel
(b). This is indicated graphically by panel (c¢), on which
“red” hexane measurements are overlaid on “black” theo-
retical values and “blue” methylcyclohexane measurements
are overlaid on “black” theoretical values.

To determine whether the experimental outputs of the
filters are indeed distributed as Poisson random variables,
the Kolmogorov-Smirnov statistical test was applied. 10,000
measurement triples (with each triple totaling 1 ms mea-
surement time) were collected for both n-hexane and meth-
ylcyclohexane in the experimental apparatus. Using this
data, a test was performed to determine whether the six sets
of random samples are distributed as Poisson random vari-
ables with the sample means. The tests indicate that the
hypothesis that the experimental output of the filters is
Poisson with the sample means cannot be rejected, even at
20% level of significance. The sample means can differ from
what the theory predicts. This discrepancy can be due to
photon leakage from DMD mirrors corresponding to longer
Raman scattered wavelengths.

FIG. 7 shows that compressive detection results obtained
using OB filters, as shown in panel (a), are more effective at
differentiating chemicals than results obtained using either
implementation of total least squares, TLS1 (panel b), or
TLS2 (panel c). Each cloud contains 10,000 data points.
“Red” points represent n-hexane data and “blue” points
represent methylcyclohexane data.

FIG. 7 shows a comparison of experimental data using
various mathematical filters. In this example, the classifica-
tion performance obtained using OB filters (panel a) is
improved compared to the classification performance
obtained using TLS (panels b, c¢), in this example using
n-hexane and methylcyclohexane data. As discussed herein,
two methods have been used to implement TLS filters in a
compressive detection instrument described herein: TLS1
(which uses spectral equivalent transmission functions) and
TLS2 (which uses linear combinations of TLS1 filters to
directly measure individual component photon rates).

FIG. 7 compares the measured distributions of n-hexane
and methylcyclohexane integrated for a total time of 1 ms
using OB filters (as described above), TLS1, and TLS2. The
OB filters provided improved results compared to either
implementation of TLS, while TLS2 provided improved
results compared to TLS1 (as indicated by the larger vari-
ance of the TLS1 score distribution shown in panel b). TL.S2
can require twice as many DMD measurements as TLS1 in
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order to independently measure the positive and negative
features of each TLS2 filter (as discussed below). The
fractional integration times per TLS1 filter were ~333 ps,
and the corresponding TLS2 filters were applied for ~0.167
us. TLS2 can be preferable to TLS1 for classifying any
moderate to highly overlapping spectra. The improved per-
formance obtained using TLS2 is linked to the fact that the
TLS2 filters are more focused on regions in which the
spectra of the components of interest differ from each other.
However, results obtained using the OB filters are higher
quality than results of either TLS1 or TLS2.

Various aspects of digital compressive detection strategies
are described herein. A method for finding optimal binary
mathematical filters that can be realized using a digital
micromirror device based compressive detection spectrom-
eter is described herein. The binary mathematical filters are
optimal in the sense that the sum of the variance of the
estimated component photon count rates is minimized. The
ability to minimize the latter objective arises from the
freedom to choose which binary mirrors are open or closed,
as well as optimal integration times per filter.

This inventive digital compressive detection strategy has
been tested by classifying liquids with various degrees of
spectral overlap, as discussed above with reference to FIGS.
2-4. As few as 10 to 25 photons per measurement were used
in these tests to accurately classify low to moderately
overlapping spectra with an error of less than 1% with total
measurement times ranging from tens to hundreds of micro-
seconds. For the highly overlapping case of two linear
alkanes (FIG. 4), accurate classification was obtained by
detecting ~200 photons, collected in a few milliseconds.
Data acquisition times approaching these timescales are not
accessible using comparative CCD-based Raman spectros-
copy. This faster speed is an advantage of compressive
detection. Optimal binary mathematical filters can provide
accurate classification using fewer photons than TLS filters.

Various aspects can be extended to quantification results
with slightly longer measurement times (as discussed above
with reference to FIG. 5). Moreover, the “nuisance param-
eter” approach, used here to remove the background signal,
can be extended to remove fluorescence that may vary from
sample to sample. In addition, the speed of results using
various inventive aspects facilitates real time chemical
imaging measurements by using compressive detection to
classify pure compounds (or mixtures) present at each
spatial point of a sample. Finally, because Partial Least
Squares (PLS) or Principal Component Analysis (PCA)
scores are simply the inner products of the sample spectrum
with various filters, such calculations can be implemented in
hardware directly (as was done for TLS filters).

Various aspects related to fixed backgrounds and other
nuisance parameters.

A “fixed background” signal is one that is present in every
measured spectrum, does not significantly vary in spectral
shape from one measurement to another, and scales linearly
with exposure time. Fixed backgrounds are an example of a
“nuisance parameter” and as such can advantageously be
removed.

In an example, there are two possible chemicals S; and S,
in a sample, and a background signal is present in all
measurements. With no chemical sample 140 (FIG. 1) in the
equipment, a normalized spectrum P, is measured (b for
“background”); P, is a column vector whose entries sum to
1. Measurements are also collected with pure samples of S,
and S, in the equipment to obtain normalized spectra P, ,,
and P,,,. Measurements are also taken of the total photons
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counted over one second with no sample, S, alone, and S,
alone, those measurements denoted X,, Z,,,, and 2, ,,
respectively.

From these initial measurements, (21) is solved with the
matrix P=[P, P, , P,,], M=3, and A=(1,1,1)” to obtain OB
filters F, the matrix T whose diagonal gives relative mea-
surement times for each filter, and resulting matrices A=F”P
and B=A"".

Each photon from the background is associated either to
the background alone or to one of the samples S; plus the
background. So for any concentration of chemical S,, the
rate of photons coming from S, alone is given by

@5

BB

Zi+b

Thus, using computed estimates A,,, and A,,, of the rates
of photons counted from S, plus the background and S, plus
the background, then A, is estimated by

A;:[l—

So E(A;) =A; and

Zb

26)

Airp-

Zb]A

i+b

@n

2
] Var(A;yp) < Var(A;yp).

Various aspects relate to producing analog patterns on a
DMD.

The mirrors of DMD 165 may either be set on (towards
the detector) or off (away from the detector). In order to
produce analog patterns, some mirrors must be turned on
longer than others over the period of photon integration. A
representative DMD 165 has a mirror switching time of ~30
ms, so the dead time for 128 sequentially-applied greyscales
(or 128 separate binary filters) is ~4 seconds. Thus, the most
efficient way to produce greyscale patterns is to switch the
mirror positions as few times as possible. In various aspects,
n binary mathematical filters are combined to reproduce one
analog mathematical filter with 2” greyscales by varying the
integration time of each of the n filters as follows. In an
example, the analog mathematical filter has 128=2" grey-
scales and a measurement time of 128 ms. Given an arbitrary
analog transmission function, the shape is first scaled to have
a maximum intensity of 127 so that each mirror is assigned
a different transmission intensity between O and 127. The
greyscale transmission intensities at each filter entry are then
expressed as a binary number. The first of 7 binary filters is
obtained by turning on all mirrors for which the correspond-
ing greyscale entry has the 64 (2°) bit set; all other mirrors
are turned off. This filter is measured for 64 ms. The second
binary filter is obtained by turning on all mirrors for which
the corresponding greyscale entry has the 32 (2°) bit set; all
others are turned off. This filter is measured for 32 ms. The
third binary filter is obtained similarly using all entries that
have the 16 (2*) bit set; this filter is measured for 16 ms, etc.
In other words, all entries with greyscales from 32 to 63 and
from 96 to 127 have the mirror turned on in the second step;
in the third step, all entries with greyscales from 16 to 31, 48
to 63, 80 to 95, and 112 to 127 have the mirror turned on;
etc. The n measurements are then summed in a post-
processing step to reproduce the effect of applying the
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original greyscale filter for 128 ms. Since the mirrors are
switched 7 times, there is a delay of 210 ms associated with
such measurements. However, a faster DMD interface can
reduce the delay to, e.g., less than 1 ms per filter.

TLS filters can be implemented in the compressive detec-
tion spectrometer in two different ways. As described above,
filters F,; with all positive entries, corresponding to a trans-
mission of 0 to 100% at each wavelength (or in the case of
binary filters, 0 or 100%), can be applied. In the first version
of TLS, referred to herein as TLSI, the j* filter F, is the
same shape as the i spectra (scaled to have a maximum
intensity of 1 or transmission of 100%). TLS1 filters are
analog, but all positive (ranging from 0 to 100% transmis-
sion) at each wavelength. Therefore, the rates from TLS may
be calculated from equation 5, where B=F”P)~" and F are
TLS1 filters. Computing the rates from X using this method
requires that all n filters must be applied to estimate the
photon rates of n components.

The second version of TLS, denoted TLS2, uses linear
combinations of TLS1 filters. It follows from the solution of
equation (5) that the transmission function defined by the
product (F?P)'F¥ may be used as an alternative way to
obtain estimates of A. Note that the filters F are the same
spectral equivalent filters as in TLS1, but the product yields
TLS2 filters. TLS2 filters can measure the photon rates of
fewer than n components, since each filter is orthogonal to
all others (i.e. each filter only “sees” one component and is
blind to all others). However, the filter entries have inten-
sities that can be positive or negative. Filters with negative
transmission intensity are not physical, but this can be
handled by writing a general filter as the difference between
two filters, each with only positive entries. Each of these
filters is then scaled to have a maximum transmission of
100%. Measuring with each of these filters, then rescaling
and taking the difference in post-processing mimics the
measurement with the corresponding TLS2 filter. While this
method requires 2n filters to measure information from all n
components, it can also be used to measure photon rates
from fewer than n components. In other words, determining
the intensity of a single component in a mixture can be
performed using only the signal from the one TLS2 filter
function pertaining to that component (which required only
measuring the number of photons detected using the corre-
sponding positive and negative filters). A comparison of
TLS1, TLS2, and OB filters is described above with refer-
ence to FIG. 7.

The invention is inclusive of combinations of the aspects
described herein. References to “a particular aspect” (or
“embodiment” or “version”) and the like refer to features
that are present in at least one aspect of the invention.
Separate references to “an aspect” or “particular aspects” or
the like do not necessarily refer to the same aspect or
aspects; however, such aspects are not mutually exclusive,
unless so indicated or as are readily apparent to one of skill
in the art. The use of singular or plural in referring to
“method” or “methods™ and the like is not limiting. The
word “or” is used in this disclosure in a non-exclusive sense,
unless otherwise explicitly noted.

The invention has been described in detail with particular
reference to certain preferred aspects thereof, but it will be
understood that variations, combinations, and modifications
can be effected by a person of ordinary skill in the art within
the spirit and scope of the invention.

The invention claimed is:
1. A method for measuring a sample to identify a selected
chemical, the method comprising:

20

using a processor, automatically computing a plurality of
binary mathematical filters using respective spectra for
each chemical of a plurality of chemicals, wherein:
the plurality of chemicals includes the selected chemi-
5 cal;
the plurality of binary mathematical filters includes at
least as many binary mathematical filters as a num-
ber of chemicals in the plurality of chemicals; and
each binary mathematical filter comprises a plurality of
binary values corresponding to respective wave-
length channels;
using the processor, automatically selecting one of the
binary mathematical filters;
using the processor, automatically operating a digital
micromirror device (DMD) having a plurality of micro-
mirrors, wherein each micromirror is associated with
one of the wavelength channels and individual micro-
mirrors of the plurality of micromirrors are positioned
20 according to respective binary values for associated
wavelength channels in the selected binary mathemati-
cal filter;
dispersing light that has interacted with the sample over a
surface of the DMD, so that light corresponding to each
25 of the wavelength channels illuminates the associated
one(s) of the micromirrors and light corresponding to
one(s) of the wavelength channels indicated in the
selected binary mathematical filter is reflected;
collecting the reflected light using an optical detector,

10

15

30 wherein light of at least two different wavelengths
impinges on the optical detector;

using the processor, automatically measuring the light

from the DMD impinging on the detector to provide a

35 measured value corresponding to the selected math-

ematical filter;
using the processor, automatically repeating the selecting,
operating, dispersing, collecting, and measuring steps
to provide respective measured values for individual
40 binary mathematical filters of the plurality of binary
mathematical filters; and
using the processor, automatically determining a classi-
fication score for the selected chemical using the mea-
sured values, wherein the score indicates an amount in
45 the sample of the selected chemical.
2. The method according to claim 1, wherein:
one of the binary mathematical filters corresponds to a
background signal;
the method further includes measuring light from the
50 DMD impinging on the detector when no sample is
present to provide a measured value corresponding to
the background signal; and
the step of determining the classification score includes
modifying the classification score using the measured
55 value corresponding to the background signal and the
measured value for the one of the binary mathematical
filters that corresponds to the background signal.
3. The method according to claim 1, wherein each binary
mathematical filter consists of the plurality of binary values
60 corresponding to the respective wavelength channels.
4. A method for measuring a sample to identify a chemi-
cal, the method comprising:
using a processor, automatically computing a plurality of
binary mathematical filters using respective spectra for
65 each of a plurality of chemicals, wherein each binary
mathematical filter includes a plurality of binary val-
ues, each value corresponding to a wavelength channel;
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using the processor, automatically adjusting a spatial light
modulator according to a selected one of the binary
mathematical filters;

dispersing light that has interacted with the sample over

the surface of the spatial light modulator, so that the
spatial light modulator provides light at wavelengths
corresponding to the selected binary mathematical fil-
ter;

using the processor, automatically measuring the light

provided by the spatial light modulator to provide a
measured value corresponding to the selected binary
mathematical filter;

using the processor, automatically repeating the adjusting,

dispersing, and measuring steps to provide respective
measured values for individual binary mathematical
filters of the binary mathematical filters; and

using the processor, automatically determining a value

corresponding to at least one of the plurality of chemi-
cals using the measured values, wherein the determined
value corresponds to the amount of one of the plurality
of chemicals in the sample.

5. The method according to claim 4, further including
determining respective values for each of the plurality of
chemicals using the measured values.

6. The method according to claim 5, further including
receiving a classification boundary and comparing the deter-
mined respective values to the classification boundary to
identify a predominant chemical in the sample, the predomi-
nant chemical being one of the plurality of chemicals.

7. The method according to claim 4, further including
computing respective measurement times for each of the
computed binary mathematical filters, wherein the measur-
ing step includes measuring the provided light for a length
of time corresponding to the measurement time for the
selected one of the binary mathematical filters.

8. The method according to claim 4, wherein each binary
mathematical filter consists of the respective plurality of
binary values and the spatial light modulator includes a
digital micromirror device that provides the light by reflect-
ing wavelengths of the dispersed light corresponding to
wavelength channels having a selected binary value in the
selected binary mathematical filter towards a detector.

9. The method according to claim 4, wherein the com-
puting-filters step includes mathematically minimizing a
selected objective function, wherein the selected objective
function is computed using the spectra.

10. The method according to claim 4, further comprising
receiving a spectrum for a nuisance parameter, wherein the
computing-filters step includes computing the binary math-
ematical filters using the received spectrum for the nuisance
parameter, wherein one of the binary mathematical filters is
associated with the nuisance parameter.

11. The method according to claim 10, further comprising
computing the respective value for at least one of the
chemicals using a corresponding binary mathematical filter
of the plurality of binary mathematical filters and the binary
mathematical filter associated with the nuisance parameter.

12. The method according to claim 4, further comprising
receiving the respective spectra for each of the plurality of
chemicals.
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13. Apparatus for detecting a chemical in a sample, the

apparatus comprising:
a light source;
an objective for focusing light from the light source onto
the sample;
a dispersive element for receiving light from the sample
and dispersing the received light spatially;
a spatial light modulator for receiving the dispersed light
and selectively providing selected wavelength band(s)
of the dispersed light;
a detector for detecting light of the selected wavelength
band(s) of the dispersed light; and
a processor coupled to the detector and adapted to auto-
matically:
receive respective spectra for each of a plurality of
chemicals;

determine a plurality of binary mathematical filters
using the spectra so that each binary mathematical
filter consists of plurality of binary values corre-
sponding to respective wavelength bands, each
binary value indicating whether the respective wave-
length band is one of the selected wavelength
band(s);

control the spatial light modulator to successively pro-
vide the selected wavelength band(s) of the dispersed
light corresponding to the binary mathematical fil-
ters;

receive respective values for each of the binary math-
ematical filters from the detector; and

determine a chemical in the sample using the respective
values.

14. The apparatus according to claim 13, wherein the light

source includes a laser.

15. The apparatus according to claim 14, wherein the light

received from the sample includes Raman-scattered light.

16. The apparatus according to claim 14, further including

a notch filter configured to substantially remove, from the
light received from the sample, at least some light from the
laser.

17. The apparatus according to claim 13, wherein the

dispersive element includes a volume holographic grating.

18. The apparatus according to claim 13, wherein the

spatial light modulator includes a reflective element.

19. The apparatus according to claim 18, wherein:

the spatial light modulator includes a digital micromirror
device (DMD) having a plurality of micromirrors, each
micromirror of the plurality of micromirrors being
associated with a wavelength channel; and

the processor is adapted to control the DMD to position
individual micromirrors of the plurality of micromir-
rors according to a respective one of the plurality of
binary values in the selected one of the binary math-
ematical filters, so that light in the selected wavelength
band(s) is reflected towards the detector.

20. The apparatus according to claim 13, wherein the

detector includes a photon counter.
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